Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.11.24.568354

ABSTRACT

Pathogen encounter results in long-lasting epigenetic imprinting that shapes diseases caused by heterologous pathogens. The breadth of this innate immune memory is of particular interest in the context of respiratory pathogens with increased pandemic potential and wide-ranging impact on global health. Here, we investigated epigenetic imprinting across cell lineages in a disease relevant murine model of SARS-CoV-2 recovery. Past SARS-CoV-2 infection resulted in increased chromatin accessibility of type I interferon (IFN-I) related transcription factors in airway-resident macrophages. Mechanistically, establishment of this innate immune memory required viral pattern recognition and canonical IFN-I signaling and augmented secondary antiviral responses. Past SARS-CoV-2 infection ameliorated disease caused by the heterologous respiratory pathogen influenza A virus. Insights into innate immune memory and how it affects subsequent infections with heterologous pathogens to influence disease pathology could facilitate the development of broadly effective therapeutic strategies.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Adenocarcinoma, Bronchiolo-Alveolar
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.01.478695

ABSTRACT

Summary SARS-CoV-2 infection or vaccination produces neutralizing antibody responses that contribute to better clinical outcomes. The receptor binding domain (RBD) and the N-terminal domain (NTD) of the spike trimer (S) constitute the two major neutralizing targets for the antibody system. Neutralizing antibodies targeting the RBD bind to several different sites on this domain. In contrast, most neutralizing antibodies to NTD characterized to date bind to a single supersite, however these antibodies were obtained by methods that were not NTD specific. Here we use NTD specific probes to focus on anti-NTD memory B cells in a cohort of pre-omicron infected individuals some of which were also vaccinated. Of 275 NTD binding antibodies tested 103 neutralized at least one of three tested strains: Wuhan-Hu-1, Gamma, or PMS20, a synthetic variant which is extensively mutated in the NTD supersite. Among the 43 neutralizing antibodies that were further characterized, we found 6 complementation groups based on competition binding experiments. 58% targeted epitopes outside the NTD supersite, and 58% neutralized either Gamma or Omicron, but only 14% were broad neutralizers. Three of the broad neutralizers were characterized structurally. C1520 and C1791 recognize epitopes on opposite faces of the NTD with a distinct binding pose relative to previously described antibodies allowing for greater potency and cross-reactivity with 7 different variants including Beta, Delta, Gamma and Omicron. Antibody C1717 represents a previously uncharacterized class of NTD-directed antibodies that recognizes the viral membrane proximal side of the NTD and SD2 domain, leading to cross-neutralization of Beta, Gamma and Omicron. We conclude SARS-CoV-2 infection and/or Wuhan-Hu-1 mRNA vaccination produces a diverse collection of memory B cells that produce anti-NTD antibodies some of which can neutralize variants of concern. Rapid recruitment of these cells into the antibody secreting plasma cell compartment upon re-infection likely contributes to the relatively benign course of subsequent infections with SARS-CoV-2 variants including omicron.


Subject(s)
COVID-19
3.
Jeremy Manry; Paul Bastard; Adrian Gervais; Tom Le Voyer; Jérémie Rosain; Quentin Philippot; Eleftherios Michailidis; Hans-Heinrich Hoffmann; Shohei Eto; Marina Garcia-Prat; Lucy Bizien; Alba Parra-Martínez; Rui Yang; Liis Haljasmägi; Mélanie Migaud; Karita Särekannu; Julia Maslovskaja; Nicolas de Prost; Yacine Tandjaoui-Lambiotte; Charles-Edouard Luyt; Blanca Amador-Borrero; Alexandre Gaudet; Julien Poissy; Pascal Morel; Pascale Richard; Fabrice Cognasse; Jesus Troya; Sophie Trouillet-Assant; Alexandre Belot; Kahina Saker; Pierre Garçon; Jacques Rivière; Jean-Christophe Lagier; Stéphanie Gentile; Lindsey Rosen; Elana Shaw; Tomohiro Morio; Junko Tanaka; David Dalmau; Pierre-Louis Tharaux; Damien Sene; Alain Stepanian; Bruno Mégarbane; Vasiliki Triantafyllia; Arnaud Fekkar; James Heath; Jose Franco; Juan-Manuel Anaya; Jordi Solé-Violán; Luisa Imberti; Andrea Biondi; Paolo Bonfanti; Riccardo Castagnoli; Ottavia Delmonte; Yu Zhang; Andrew Snow; Steve Holland; Catherine Biggs; Marcela Moncada-Vélez; Andrés Arias; Lazaro Lorenzo; Soraya Boucherit; Dany Anglicheau; Anna Planas; Filomeen Haerynck; Sotirija Duvlis; Robert Nussbaum; Tayfun Ozcelik; Sevgi Keles; Aziz Bousfiha; Jalila El Bakkouri; Carolina Ramirez-Santana; Stéphane Paul; Qiang Pan-Hammarstrom; Lennart Hammarstrom; Annabelle Dupont; Alina Kurolap; Christine Metz; Alessandro Aiuti; Giorgio Casari; Vito Lampasona; Fabio Ciceri; Lucila Barreiros; Elena Dominguez-Garrido; Mateus Vidigal; Mayana Zatz; Diederik van de Beek; Sabina Sahanic; Ivan Tancevski; Yurii Stepanovskyy; Oksana Boyarchuk; Yoko Nukui; Miyuki Tsumura; Loreto Vidaur; Stuart Tangye; Sonia Burrel; Darragh Duffy; Lluis Quintana-Murci; Adam Klocperk; Nelli Kann; Anna Shcherbina; Yu-Lung Lau; Daniel Leung; Matthieu Coulongeat; Julien Marlet; Rutger Koning; Luis Reyes; Angélique Chauvineau-Grenier; Fabienne Venet; guillaume monneret; Michel Nussenzweig; Romain Arrestier; Idris Boudhabhay; Hagit Baris-Feldman; David Hagin; Joost Wauters; Isabelle Meyts; Adam Dyer; Sean Kennelly; Nollaig Bourke; Rabih Halwani; Fatemeh Sharif-Askari; Karim Dorgham; Jérôme Sallette; Souad Mehlal-Sedkaoui; Suzan AlKhater; Raúl Rigo-Bonnin; Francisco Morandeira; Lucie Roussel; Donald Vinh; Christian Erikstrup; Antonio Condino-Neto; Carolina Prando; Anastasiia Bondarenko; András Spaan; Laurent Gilardin; Jacques Fellay; Stanislas Lyonnet; Kaya Bilguvar; Richard Lifton; Shrikant Mane; Mark Anderson; Bertrand Boisson; Vivien Béziat; Shen-Ying Zhang; Evangelos Andreakos; Olivier Hermine; Aurora Pujol; Pärt Peterson; Trine Hyrup Mogensen; Lee Rowen; James Mond; Stéphanie Debette; Xavier deLamballerie; Charles Burdet; Lila Bouadma; Marie Zins; Pere Soler-Palacin; Roger Colobran; Guy Gorochov; Xavier Solanich; Sophie Susen; Javier Martinez-Picado; Didier Raoult; Marc Vasse; Peter Gregersen; Carlos Rodríguez-Gallego; Lorenzo Piemonti; Luigi Notarangelo; Helen Su; Kai Kisand; Satoshi Okada; Anne Puel; Emmanuelle Jouanguy; Charles Rice; Pierre Tiberghien; Qian Zhang; Jean-Laurent Casanova; Laurent Abel; Aurélie Cobat.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1225906.v1

ABSTRACT

SARS-CoV-2 infection fatality rate (IFR) doubles with every five years of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-β are found in ~20% of deceased patients across age groups. In the general population, they are found in ~1% of individuals aged 20-70 years and in >4% of those >70 years old. With a sample of 1,261 deceased patients and 34,159 uninfected individuals, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to non-carriers. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRD was 17.0[95% CI:11.7-24.7] for individuals under 70 years old and 5.8[4.5-7.4] for individuals aged 70 and over, whereas, for autoantibodies neutralizing both molecules, the RRD was 188.3[44.8-774.4] and 7.2[5.0-10.3], respectively. IFRs increased with age, from 0.17%[0.12-0.31] for individuals <40 years old to 26.7%[20.3-35.2] for those ≥80 years old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84%[0.31-8.28] to 40.5%[27.82-61.20] for the same two age groups, for autoantibodies neutralizing both molecules. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, particularly those neutralizing both IFN-α2 and -ω. Remarkably, IFR increases with age, whereas RRD decreases with age. Autoimmunity to type I IFNs appears to be second only to age among common predictors of COVID-19 death.


Subject(s)
COVID-19
4.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-555612.v1

ABSTRACT

Monoclonal antibodies (mAbs) with neutralizing activity against SARS-CoV-2 have demonstrated clinical benefit in cases of mild to moderate SARS-CoV-2 infection, substantially reducing the risk for hospitalization and severe disease1-4. Treatment generally requires the administration of high doses of these mAbs with limited efficacy in preventing disease complications or mortality among hospitalized COVID-19 patients5. Here we report the development and evaluation of Fc-optimized anti-SARS-CoV-2 mAbs with superior potency to prevent or treat COVID-19 disease. In several animal models of COVID-19 disease6,7, we demonstrate that selective engagement of activating FcγRs results in improved efficacy in both preventing and treating disease-induced weight loss and mortality, significantly reducing the dose required to confer full protection upon SARS-CoV-2 challenge and treatment of pre-infected animals. Our results highlight the importance of FcγR pathways in driving antibody-mediated antiviral immunity, while excluding any pathogenic or disease-enhancing effects of FcγR engagement of anti-SARS-CoV-2 antibodies upon infection. These findings have important implications for the development of Fc-engineered mAbs with optimal Fc effector function and improved clinical efficacy against COVID-19 disease.


Subject(s)
COVID-19
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.07.443175

ABSTRACT

Over one year after its inception, the coronavirus disease-2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) remains difficult to control despite the availability of several excellent vaccines. Progress in controlling the pandemic is slowed by the emergence of variants that appear to be more transmissible and more resistant to antibodies 1,2 . Here we report on a cohort of 63 COVID-19-convalescent individuals assessed at 1.3, 6.2 and 12 months after infection, 41% of whom also received mRNA vaccines 3,4 . In the absence of vaccination antibody reactivity to the receptor binding domain (RBD) of SARS-CoV-2, neutralizing activity and the number of RBD-specific memory B cells remain relatively stable from 6 to 12 months. Vaccination increases all components of the humoral response, and as expected, results in serum neutralizing activities against variants of concern that are comparable to or greater than neutralizing activity against the original Wuhan Hu-1 achieved by vaccination of naïve individuals 2,5-8 . The mechanism underlying these broad-based responses involves ongoing antibody somatic mutation, memory B cell clonal turnover, and development of monoclonal antibodies that are exceptionally resistant to SARS-CoV-2 RBD mutations, including those found in variants of concern 4,9 . In addition, B cell clones expressing broad and potent antibodies are selectively retained in the repertoire over time and expand dramatically after vaccination. The data suggest that immunity in convalescent individuals will be very long lasting and that convalescent individuals who receive available mRNA vaccines will produce antibodies and memory B cells that should be protective against circulating SARS-CoV-2 variants.


Subject(s)
COVID-19 , Coronavirus Infections , Severe Acute Respiratory Syndrome
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.092619

ABSTRACT

Part 1: Development and calibration of suitably accurate functional assays for BRCA1 RING domain and BRCT domain missense substitutions could dramatically accelerate clinical classification of rare missense substitutions observed in that gene. Leveraging data from 68,000 full sequence tests of BRCA1 and BRCA2, plus data from the limited number of already classified BRCA1 RING domain missense substitutions, we used logistic regression and related techniques to evaluate three BRCA1 RING domain assays. These were recently described high throughput yeast 2-hybrid and E3 ubiquitin ligase assays, plus a newly developed mammalian 2- hybrid assay. While there were concerns about the accuracy of the yeast 2-hybrid assay and the indirect nature of the ubiquitin ligase assay, the mammalian 2-hybrid assay had excellent correlation with existing missense substitution classifications. After calibration, this assay contributed to classification of one newly reported BRCA1 missense substitution. In principal, the mammalian 2-hybrid assay could be converted to a high-throughput format that would likely retain suitable accuracy. Part 2: How does one achieve clinically applicable classification of the vast majority of all possible sequence variants in disease susceptibility genes? BRCA1 is a high-risk susceptibility gene for breast and ovarian cancer. Pathogenic protein truncating variants are scattered across the open reading frame, but all known missense substitutions that are pathogenic because of missense dysfunction are located in either the amino-terminal RING domain or the carboxy-terminal BRCT domain. Heterodimerization of the BRCA1 and BARD1 RING domains is a molecularly defined obligate activity. Hence, we tested every BRCA1 RING domain missense substitution that can be created by a single nucleotide change for heterodimerization with BARD1 in a Mammalian 2-hybrid (M2H) assay. Downstream of the M2H laboratory assay, we addressed three additional challenges: assay calibration, validation thereof, and integration of the calibrated results with other available data such as computational evidence and patient/population observational data to achieve clinically applicable classification. Overall, we found that about 20% of BRCA1 RING domain missense substitutions are pathogenic. Using a Bayesian point system for data integration and variant classification, we achieved clinical classification of about 89% of observed missense substitutions. Moreover, among missense substitutions not present in the human observational data used here, we find an additional 47 with concordant computational and functional assay evidence in favor of pathogenicity; these are particularly likely to be classified as Likely Pathogenic once human observational data become available.


Subject(s)
Breast Neoplasms
7.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3773794

ABSTRACT

Although lung disease is the primary clinical outcome in COVID-19 patients, how SARS-CoV-2 induces lung pathology remains elusive. Here we describe a high-throughput platform to generate self-organizing, nearly identical, and genetically-matched human lung buds derived from hESCs cultured on micropatterned substrates. Synthetic lung buds resemble human fetal lungs and display proximo-distal patterning of alveolar and airway tissue directed by KGF. They are susceptible to infection by SARS-CoV-2 and endemic coronaviruses and can be used to track cell type-specific cytopathic effects in hundreds of lung buds in parallel. We detected an increased susceptibility to infection in alveolar cells and identified cycling alveolar stem cells as new targets of SARS-CoV-2. We used this platform to test neutralizing antibodies that efficiently blocked SARS-CoV-2 infection and transmission. Synthetic lung buds offer unlimited, rapid and scalable access to disease-relevant tissue that recapitulates human lung morphogenesis to identify key vulnerabilities for COVID-19 and respiratory viruses.Funding: This work was supported by the Pershing Square Foundation, NIH grants P01AI138398-S1, 2U19AI111825, and R01AI091707-10S1, a George Mason University Fast Grant, the BAWD Foundation, the G. Harold and Leila Y. Mathers Charitable Foundation, and private funding from the Rockefeller University.Conflict of Interest: A.H.B. is a co-founder of 2 startup companies: Rumi Scientific Inc. and OvaNova Laboratories, LLC and serves on their scientific advisory boards. C.M.R. is a founder of Apath LLC, a Scientific Advisory Board member of Imvaq Therapeutics, Vir Biotechnology, and Arbutus Biopharma, and an advisor for Regulus Therapeutics and Pfizer. All other authors declare no competing interests.


Subject(s)
COVID-19 , Lung Diseases , Laboratory Infection
8.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.06.425622

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the global COVID-19 pandemic and the lack of therapeutics hinders pandemic control1-2. Although lung disease is the primary clinical outcome in COVID-19 patients1-3, how SARS-CoV-2 induces tissue pathology in the lung remains elusive. Here we describe a high-throughput platform to generate tens of thousands of self-organizing, nearly identical, and genetically matched human lung buds derived from human pluripotent stem cells (hPSCs) cultured on micropatterned substrates. Strikingly, in vitro-derived human lung buds resemble fetal human lung tissue and display in vivo-like proximo-distal coordination of alveolar and airway tissue differentiation whose 3D epithelial self-organization is directed by the levels of KGF. Single-cell transcriptomics unveiled the cellular identities of airway and alveolar tissue and the differentiation of WNThi cycling alveolar stem cells, a human-specific lung cell type4. These synthetic human lung buds are susceptible to infection by SARS-CoV-2 and endemic coronaviruses and can be used to track cell type-dependent susceptibilities to infection, intercellular transmission and cytopathology in airway and alveolar tissue in individual lung buds. Interestingly, we detected an increased susceptibility to infection in alveolar cells and identified cycling alveolar stem cells as targets of SARS-CoV-2. We used this platform to test neutralizing antibodies isolated from convalescent plasma that efficiently blocked SARS-CoV-2 infection and intercellular transmission. Our platform offers unlimited, rapid and scalable access to disease-relevant lung tissue that recapitulate key hallmarks of human lung development and can be used to track SARS-CoV-2 infection and identify candidate therapeutics for COVID-19.


Subject(s)
COVID-19
9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.21.214759

ABSTRACT

Neutralizing antibodies elicited by prior infection or vaccination are likely to be key for future protection of individuals and populations against SARS-CoV-2. Moreover, passively administered antibodies are among the most promising therapeutic and prophylactic anti-SARS-CoV-2 agents. However, the degree to which SARS-CoV-2 will adapt to evade neutralizing antibodies is unclear. Using a recombinant chimeric VSV/SARS-CoV-2 reporter virus, we show that functional SARS-CoV-2 S protein variants with mutations in the receptor binding domain (RBD) and N-terminal domain that confer resistance to monoclonal antibodies or convalescent plasma can be readily selected. Notably, SARS-CoV-2 S variants that resist commonly elicited neutralizing antibodies are now present at low frequencies in circulating SARS-CoV-2 populations. Finally, the emergence of antibody-resistant SARS-CoV-2 variants that might limit the therapeutic usefulness of monoclonal antibodies can be mitigated by the use of antibody combinations that target distinct neutralizing epitopes.

10.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.08.140871

ABSTRACT

The emergence of SARS-CoV-2 and the ensuing explosive epidemic of COVID19 disease has generated a need for assays to rapidly and conveniently measure the antiviral activity of SARS-CoV-2-specific antibodies. Here, we describe a collection of approaches based on SARS-CoV-2 spike-pseudotyped, single-cycle, replication-defective human immunodeficiency virus type-1 (HIV-1) and vesicular stomatitis virus (VSV), as well as a replication-competent VSV/SARS-CoV-2 chimeric virus. While each surrogate virus exhibited subtle differences in the sensitivity with which neutralizing activity was detected, the neutralizing activity of both convalescent plasma and human monoclonal antibodies measured using each virus correlated quantitatively with neutralizing activity measured using an authentic SARS-CoV-2 neutralization assay. The assays described herein are adaptable to high throughput and are useful tools in the evaluation of serologic immunity conferred by vaccination or prior SARS-CoV-2 infection, as well as the potency of convalescent plasma or human monoclonal antibodies.


Subject(s)
COVID-19 , HIV Infections
11.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.13.092619

ABSTRACT

During the COVID-19 pandemic, SARS-CoV-2 infected millions of people and claimed hundreds of thousands of lives. Virus entry into cells depends on the receptor binding domain (RBD) of the SARS-CoV-2 spike protein (S). Although there is no vaccine, it is likely that antibodies will be essential for protection. However, little is known about the human antibody response to SARS-CoV-21-5. Here we report on 149 COVID-19 convalescent individuals. Plasmas collected an average of 39 days after the onset of symptoms had variable half-maximal neutralizing titers ranging from undetectable in 33% to below 1:1000 in 79%, while only 1% showed titers >1:5000. Antibody cloning revealed expanded clones of RBD-specific memory B cells expressing closely related antibodies in different individuals. Despite low plasma titers, antibodies to three distinct epitopes on RBD neutralized at half-maximal inhibitory concentrations (IC50s) as low as single digit ng/mL. Thus, most convalescent plasmas obtained from individuals who recover from COVID-19 do not contain high levels of neutralizing activity. Nevertheless, rare but recurring RBD-specific antibodies with potent antiviral activity were found in all individuals tested, suggesting that a vaccine designed to elicit such antibodies could be broadly effective.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL